WebSphere MQ provides assured one-time delivery of messages across a wide variety of platforms. The product emphasizes reliability and robustness of message traffic, and ensures that a message should never be lost if MQ is appropriately configured.
It needs to be remembered that a message in the context of MQ has no implication other than a gathering of data. MQ is very generalized and can be used as a robust substitute for many forms of intercommunication. For example, it can be used to implement reliable delivery of large files as a substitute for FTP.
MQ provides application designers a mechanism to achieve non-time-dependent architecture. Messages can be sent from one application to another, regardless of whether the applications are running at the same time. If a message receiver application is not running when a sender sends it a message, the queue manager will hold the message until the receiver asks for it. Ordering of all messages is preserved, by default this is in FIFO order of receipt at the local queue within priority of the message.
It provides a means for transforming data between different architectures and protocols, such as Big Endian to Little Endian, or EBCDIC to ASCII. This is accomplished through the use of message data "exits". Exits are compiled applications which run on the queue manager host, and are executed by the WebSphere MQ software at the time data transformation is needed.
WebSphere MQ allows receipt of messages to "trigger" other applications to run, and thus provides the framework for a message driven architecture.
It implements the JMS standard API, and also has its own proprietary API, known as the Message Queuing Interface.
Unlike email, MQ itself is responsible for determining the destination of messages by the definition of queues, so processing of sent messages can be moved to a different application at a different destination. MQ provides a robust routing architecture, allowing messages to be routed via alternative paths around a network of MQ managers. MQ can be implemented as a cluster, where multiple MQ implementations share the processing of messages to allow higher performance and load balancing.
It needs to be remembered that a message in the context of MQ has no implication other than a gathering of data. MQ is very generalized and can be used as a robust substitute for many forms of intercommunication. For example, it can be used to implement reliable delivery of large files as a substitute for FTP.
MQ provides application designers a mechanism to achieve non-time-dependent architecture. Messages can be sent from one application to another, regardless of whether the applications are running at the same time. If a message receiver application is not running when a sender sends it a message, the queue manager will hold the message until the receiver asks for it. Ordering of all messages is preserved, by default this is in FIFO order of receipt at the local queue within priority of the message.
It provides a means for transforming data between different architectures and protocols, such as Big Endian to Little Endian, or EBCDIC to ASCII. This is accomplished through the use of message data "exits". Exits are compiled applications which run on the queue manager host, and are executed by the WebSphere MQ software at the time data transformation is needed.
WebSphere MQ allows receipt of messages to "trigger" other applications to run, and thus provides the framework for a message driven architecture.
It implements the JMS standard API, and also has its own proprietary API, known as the Message Queuing Interface.
Unlike email, MQ itself is responsible for determining the destination of messages by the definition of queues, so processing of sent messages can be moved to a different application at a different destination. MQ provides a robust routing architecture, allowing messages to be routed via alternative paths around a network of MQ managers. MQ can be implemented as a cluster, where multiple MQ implementations share the processing of messages to allow higher performance and load balancing.
Comments
Post a Comment